Ultrafast Dynamics of the Medicinal Pigment Curcumin inside the Imidazolium Surface Active Ionic Liquid Containing Giant Vesicles and White Light Generation via Triple-FRET Technique.
Nanigopal BeraSouvik LayekShashwata PramanikPratyush Kiran NandiRitwik HazraNilmoni SarkarPublished in: Langmuir : the ACS journal of surfaces and colloids (2023)
The naturally occurring yellow polyphenolic medicinal pigment curcumin shows ultrafast dynamics in the excited states. These ultrafast dynamics are strongly influenced by the rigidity of the environments of the systems. The present investigation unveils the ultrafast excited-state intramolecular hydrogen atom transfer (ESIHT) (which is involved in the antioxidant mechanism) and the solvation dynamics of curcumin inside the imidazolium surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride ([C 16 mim]Cl) micelle, and giant vesicles after introducing sorbitan monoesters (Span 20 and Span 80) in the aqueous medium. Interestingly, the short hydrocarbon chain containing Span 20 forms smaller, less rigid vesicles, and the long hydrocarbon chain containing Span 80 forms larger, more rigid giant vesicles after being assembled with [C 16 mim]Cl. The ESIHT and the solvation dynamics are slower in Span 80, containing rigid vesicles, than that in Span 20, comprising less rigid vesicles. Finally, we have established a three-component fluorescence resonance energy transfer (Triple-FRET) system to generate white light (WL) in the micelle and giant vesicles. Here the hydrophobic dye 1,6-diphenyl-1,3,5-hexatriene (DPH) acts as the donor, and the hydrophilic anticancer drug doxorubicin hydrochloride (DOX) serves as the acceptor along with the intermediate donor, curcumin. At a specific combination of the concentrations of these dyes in a particular self-assembled system, WL is generated due to the triple-FRET phenomena.