Login / Signup

Carotenoid Contents of Lycium barbarum: A Novel QAMS Analyses, Geographical Origins Discriminant Evaluation, and Storage Stability Assessment.

Ruru RenYanting LiHuan ChenYingli WangLingling YangChao SuXiaojun ZhaoJianyu ChenXue-Qin Ma
Published in: Molecules (Basel, Switzerland) (2021)
Given the standard substances of zeaxanthin and its homologues obtained from Lycium barbarum L. (LB) are extremely scarce and unstable, a novel quantitative analysis of carotenoids by single marker method, named QAMS, was established. Four carotenoids including lutein, zeaxanthin, β-carotene, and zeaxanthin dipalmitate were determined simultaneously by employing trans-β-apo-8'-carotenal, a carotenoid component which did not exist in LB, as standard reference. Meanwhile, β-carotene, another carotenoid constituent which existed in LB, was determined as contrast. The QAMS methods were fully verified and exhibited low standard method difference with the external standard method (ESM), evidenced by the contents of four carotenoids in 34 batches of LB samples determined using ESM and QAMS methods, respectively. HCA, PCA, and OPLS-DA analysis disclosed that LB samples could be clearly differentiated into two groups: one contained LB samples collected from Ningxia and Gansu; the other was from Qinghai, which was directly related to the different geographical location. Once exposed under high humidity (RH 75 ± 5%) at a high temperature (45 ± 5 °C) as compared with ambient temperature (25 ± 5 °C), from day 0 to day 28, zeaxanthin dipalmitate content was significantly decreased, and ultimately, all the decrease rates reached about 80%, regardless of the storage condition. Our results provide a good basis for improving the quality control of LB.
Keyphrases
  • quality control
  • high temperature
  • magnetic resonance
  • computed tomography
  • drinking water
  • magnetic resonance imaging
  • particulate matter
  • mass spectrometry