Metal Azolate Coordination Polymer-Enabled High Payload and Non-Destructive Enzyme Immobilization for Biocatalysis and Biosensing.
Hao ZhuXiangli LiZhimei HeYun ChenJun-Jie ZhuPublished in: Analytical chemistry (2022)
The biomineralized metal-organic frameworks (MOFs) as protective layers help enhance the robustness of enzymes for biocatalysis. Despite great efforts, it is still challenging to develop a recyclable system with high payload and tolerance to harsh conditions. Here, we report a facile surface charge-independent strategy based on Zn-based coordination polymer (ZnCP) for nondestructive immobilization of enzyme. The ZnCP outcompetes most of the previously reported MOFs, in terms of high-payload enzyme packaging. Moreover, benefiting from the hydrophilicity of ZnCP, the entrapped enzymes (e.g., positive cytochrome C and negative glucose oxidase) maintained high catalytic activity, resembling their native counterparts. Notably, compared with ZIF-8, such enzyme-incorporated ZnCP (enzyme@ZnCP) is more tolerant to acidic pH, which imparts the enzyme with good recyclability, even in acid species-generated catalytic reactions, thus broadening its application in biocatalysis. The feasibility of enzyme@ZnCP for protein packaging, enzyme cascade catalysis, and biosensing was also validated. Altogether, enzyme@ZnCP demonstrates high enzyme payload, operational stability, and preservation of enzymatic activity, affording a versatile platform to accommodate bioactive enzyme for biocatalysis and biosensing.