Login / Signup

Analysis of the Fusarium graminearum Species Complex From Gramineous Weeds Near Wheat Fields in Jiangsu Province, China.

Fei DongYunpeng LiXinyuan ChenJirong WuShufang WangXiao ZhangGuizhen MaYin-Won LeeMduduzi P MokoenaAdemola O OlaniranJian Hong XuJian Rong Shi
Published in: Plant disease (2021)
Several weed species are known as alternative hosts of the Fusarium graminearum species complex (FGSC), and their epidemiological significance in Fusarium head blight (FHB) has been investigated; however, scant information is available regarding FGSC occurrence in weeds near Chinese wheat fields. To evaluate the potential role of gramineous weeds surrounding wheat fields in FHB, 306 FGSC isolates were obtained from 210 gramineous weed samples in 2018 in Jiangsu Province. Among them, 289 were Fusarium asiaticum, and the remainder were F. graminearum. Trichothecene genotype and mycotoxin analyses revealed that 74.3% of the F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype, and the remainder were the nivalenol (NIV) chemotype. Additionally, 82.4% of F. graminearum isolates were the 15-acetyldeoxynivalenol (15ADON) chemotype, and the remainder were the NIV chemotype. FHB severity and trichothecene analysis indicated that F. asiaticum isolates with the 3ADON chemotype were more aggressive than those with the NIV chemotype in wheat. 3ADON and NIV chemotypes of F. asiaticum isolated from weeds and wheat showed no significant differences in pathogenicity in wheat. All selected F. asiaticum isolates produced perithecia, with little difference between the 3ADON and NIV chemotypes. These results highlight the epidemiology of the FGSC isolated from weeds near wheat fields, with implications for reducing FHB inoculum in China.
Keyphrases
  • genetic diversity
  • south africa
  • healthcare
  • escherichia coli
  • staphylococcus aureus
  • climate change
  • biofilm formation
  • high speed