Login / Signup

Heterotrimeric G-protein regulatory circuits in plants: Conserved and novel mechanisms.

Sona Pandey
Published in: Plant signaling & behavior (2017)
ARTICLE ADDENDUM Efficient activation and deactivation of Gα protein is critical for the regulation of heterotrimeric G-protein mediated signaling pathways. While the core G-protein components and their activation/deactivation chemistries are broadly conserved throughout the eukaryotic evolution, their regulatory mechanisms seem to have been rewired in plants to meet specific needs. Plants such as Arabidopsis, which have a limited number of G-protein components and their regulators, offer a unique opportunity to dissect the mechanistic details of distinct signaling pathways. We have recently established an interaction between the regulator of G-protein signaling 1 (RGS1) and phospholipase Dα1 (PLDα1); 2 of the GTPase activity accelerating proteins (GAPs) of the Arabidopsis Gα protein, GPA1. We now show that phosphatidic acid (PA), a key product of PLDα1 activity, can bind with and modulate the GAP activity of RGS1, uncovering a molecular link between lipid and G-protein signaling and its role in providing the specificity of response regulation.
Keyphrases
  • transcription factor
  • signaling pathway
  • cell proliferation
  • plant growth