Login / Signup

The sinking behavior of micro-nano particulate matter for bisphenol analogues in the surface water of an ecological demonstration zone, China.

Yuanfei CaiJinghua RenZijian YouJianchao LiuGuanghua LuYiping LiJunfeng Li
Published in: Environmental science. Processes & impacts (2021)
Bisphenol analogues (BPs) have been widely used in industrial production as substitutes of bisphenol A (BPA). The demand and production of BPs are growing rapidly in China. In this study, the pollution levels and distribution characteristics of five BPs were investigated in surface water from rivers located in different land-use types of an ecological demonstration zone. All BPs were detected at least once in the traditionally dissolved phase, colloidal phase and suspended particulate matter (SPM) with the mean total concentrations of 465.1 ng L-1, 114.4 ng L-1 and 11.3 μg g-1 dry weight, respectively. BPA is the dominant BP in the traditionally dissolved phase and colloidal phase, with the mean contribution rates of 77.6% and 70.7%, respectively, followed by bisphenol F (BPF) and/or bisphenol S (BPS). The colloids as the important sinks of contaminants contributed 42.3% of bisphenol Z, 37.3% of BPF, 24.9% of BPA, 22.3% of BPAF and 18.4% of BPS in the traditionally dissolved phase. However, BPA alternatives are found primarily in the SPM, in which the contribution rate of BPA ranges from 0.6% to 48.1%, with the mean contribution of 12.4%. Based on BP concentrations in the traditionally dissolved phase, moderate ecological risk levels of BPA and BPF towards aquatic organisms were posed. Fish and/or algae are the most sensitive aquatic organisms, and hence chronic toxicological effects should not be ignored especially in fish.
Keyphrases
  • particulate matter
  • air pollution
  • organic matter
  • risk assessment
  • human health
  • climate change
  • body mass index
  • high resolution
  • wastewater treatment
  • molecular dynamics simulations
  • single molecule
  • weight gain