Login / Signup

Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish.

Hans Georg FrohnhöferSilke Geiger-RudolphMartin PattkyMartin MeixnerCarolin HuhnHans-Martin MaischeinRobert GeislerInes GehringFlorian MaderspacherChristiane Nüsslein-VolhardUwe Irion
Published in: Biology open (2016)
Polyamines are small poly-cations essential for all cellular life. The main polyamines present in metazoans are putrescine, spermidine and spermine. Their exact functions are still largely unclear; however, they are involved in a wide variety of processes affecting cell growth, proliferation, apoptosis and aging. Here we identify idefix, a mutation in the zebrafish gene encoding the enzyme spermidine synthase, leading to a severe reduction in spermidine levels as shown by capillary electrophoresis-mass spectrometry. We show that spermidine, but not spermine, is essential for early development, organogenesis and colour pattern formation. Whereas in other vertebrates spermidine deficiency leads to very early embryonic lethality, maternally provided spermidine synthase in zebrafish is sufficient to rescue the early developmental defects. This allows us to uncouple them from events occurring later during colour patterning. Factors involved in the cellular interactions essential for colour patterning, likely targets for spermidine, are the gap junction components Cx41.8, Cx39.4, and Kir7.1, an inwardly rectifying potassium channel, all known to be regulated by polyamines. Thus, zebrafish provide a vertebrate model to study the in vivo effects of polyamines.
Keyphrases
  • mass spectrometry
  • capillary electrophoresis
  • oxidative stress
  • early onset
  • signaling pathway
  • gene expression
  • cell fate
  • gas chromatography
  • cell cycle arrest
  • pi k akt
  • genome wide identification