Login / Signup

Chemical Protective Textiles of UiO-66-Integrated PVDF Composite Fibers with Rapid Heterogeneous Decontamination of Toxic Organophosphates.

Derek B DwyerNicholas DuganNicole HoffmanDaniel J CookeMorgan G HallTrenton M TovarWilliam E BernierJared B DeCosteNatalie L PomerantzWayne E Jones
Published in: ACS applied materials & interfaces (2018)
Metal-organic frameworks (MOFs) are a new and growing area of materials with high porosity and customizability. UiO-66, a zirconium-based MOF, has shown much interest to the military because of the ability of the MOF to catalytically decontaminate chemical warfare agents (CWAs). Unfortunately, the applications for MOFs are limited because of their powder form, which is difficult to incorporate into protective clothing. As a result, a new area of research has developed to functionalize fabrics with MOFs to make a wearable multifunctional fabric that retains the desired properties of the MOF. In this work, UiO-66 was incorporated into poly(vinylidene) fluoride/Ti(OH)4 composite fabric using electrospinning and evaluated for its use in chemical protective clothing. The base triethanolamine (TEA) was added to the composite fabric to create a self-buffering system that would allow for catalytic decontamination of CWAs without the need for a buffer solution. The fabrics were tested against the simulants methyl-paraoxon (dimethyl (4-nitrophenyl) phosphate, DMNP), diisopropyl fluorophosphate (DFP), and the nerve agent soman (GD). The results show that all of the samples have high moisture vapor transport and filtration efficiency, which are desirable for protective clothing. The incorporation of TEA decreased air permeation of the fabric, but increased the catalytic activity of the composite fabric against DMNP and DFP. Samples with and without TEA have rapid half-lives ( t1/2) as short as 35 min against GD agent. These new catalytically active self-buffering multifunctional fabrics have great potential for application in chemical protective clothings.
Keyphrases
  • metal organic framework
  • drug delivery
  • climate change
  • risk assessment
  • loop mediated isothermal amplification
  • human health
  • posttraumatic stress disorder