Login / Signup

Effect of Steel Fiber Content on Shear Behavior of Reinforced Expanded-Shale Lightweight Concrete Beams with Stirrups.

Changyong LiMinglei ZhaoXiaoyan ZhangJie LiXiaoke LiMingshuang Zhao
Published in: Materials (Basel, Switzerland) (2021)
To determine the validity of steel fiber reinforced expanded-shale lightweight concrete (SFRELC) applied in structures, the shear behavior of SFRELC structural components needs to be understood. In this paper, four-point bending tests were carried out on reinforced SFRELC beams with stirrups and a varying volume fraction of steel fiber from 0.4% to 1.6%. The shear cracking force, shear crack width and distribution pattern, mid-span deflection, and failure modes of test beams were recorded. Results indicate that the shear failure modes of reinforced SFRELC beams with stirrups were modified from brittle to ductile and could be transferred to the flexure mode with the increasing volume fraction of steel fiber. The coupling of steel fibers with stirrups contributed to the shear cracking force and the shear capacity provided by the SFRELC, and it improved the distribution of shear cracks. At the limit loading level of beams in building structures at serviceability, the maximum width of shear cracks could be controlled within 0.3 mm and 0.2 mm with the volume fraction of steel fiber increased from 0.4% to 0.8%. Finally, the formulas are proposed for the prediction of shear-cracking force, shear crack width, and shear capacity of reinforced SFRELC beams with stirrups.
Keyphrases
  • high resolution
  • single molecule