Adding Solvent into Ionic Liquid-Gated Transistor: The Anatomy of Enhanced Gating Performance.
Wei ZhaoSheng BiCheng ZhangPhilip D RackGuang FengPublished in: ACS applied materials & interfaces (2019)
Most studies of ionic liquid (IL)-gated field effect transistors (FETs) focus on the extremely large electric field and capacitance induced in liquid/solid interfaces and correspondingly the significantly enhanced carrier density in semiconductors, which can appreciably improve the gating performance. However, how to boost the switching speed, another key property of gating performance of FETs, has been rarely explored. In this work, the gating performance of molybdenum disulfide (MoS2) FETs, gated by the mixtures of IL/organic solvent (1-butyl-3-methylimidazolium tetrafluoroborate/acetonitrile, [Bmim][BF4]/ACN) at different ion concentrations, is investigated for both dynamic and static properties by a combination of molecular dynamics simulation and resistance network analysis. Results reveal that organic solvent can speed up the IL response time by a factor of about 40 times at the optimal ion concentration of 1.94 M, which is mainly attributed to the increased ionic conductivity of IL via the addition of organic solvent. Meanwhile, the surface charge distribution of MoS2 becomes more homogenous after the addition of organic solvent, which increases the conductivity of MoS2 by up to 2.4 times. Surprisingly, the optimal ion concentration for increased switching speed is nearly the same as that for achieving the highest MoS2 conductivity. Thus, our findings provide a strategy to simultaneously improve the dynamic and static gating performance of IL-gated FETs as well as a modeling technique to screen out the ideal ion concentration.