Login / Signup

Universal Model to Support the Quality Improvement of Industrial Products.

Andrzej PacanaDominika Siwiec
Published in: Materials (Basel, Switzerland) (2021)
Improving the quality of industrial products quality still is a challenge. Despite using quality control, there is a constant need to support this process to achieve an effective, precise, and complex analysis of product quality. The purpose was to develop a universal model that supports improving the quality of products via the consistent and repetitive determination of the causes of product incompatibilities and actions leading to their elimination; the model can be integrated with any quality control of the product. The model verification was carried out for the incompatibility of the mechanical seal in alloy 410, in which the porosity cluster was identified by the fluorescence method (FPI). The purpose of the analysis was created by the SMART(-ER) method. Then, a team of experts was selected from which the brainstorming (BM) was realized. After the BM method, the source of incompatibility and initial causes were identified. Then, the Ishikawa diagram (according to rule 5M + E) was developed to group the initial causes. Next, during the BM method, the main causes were selected. In the last stage, the 5Why method was used to determine improvement actions, i.e., adjust clotting parameters, introduce the obligation to undergo periodic training, and set aside a separate place for storing the electrodes. Originality is the combination of selected quality management tools in a coherent model, the main aim of which is to identify the main causes of incompatibility and improvement actions. Additionally, this model is universal and has applications with analyzing any product and the causes of its incompatibility, and it can be integrated with any product quality control. Therefore, the model can be useful for improving the quality of products in any enterprise.
Keyphrases
  • quality control
  • quality improvement
  • palliative care
  • heavy metals
  • mass spectrometry
  • high resolution
  • patient safety
  • gold nanoparticles
  • high frequency
  • wastewater treatment
  • reduced graphene oxide