Login / Signup

Multifunctional Binuclear Ln(III) Complexes Obtained via In Situ Tandem Reactions: Multiple Photoresponses to Volatile Organic Solvents and Anticounterfeiting and Magnetic Properties.

Hui-Feng WangZhong-Hong ZhuJin-Mei PengBing YinHai-Ling WangZhong-Hong ZhuFu-Pei Liang
Published in: Inorganic chemistry (2020)
The design and synthesis of simple lanthanide complexes with multiple functions have been widely studied and have faced certain challenges. Herein, we successfully synthesized the series of binuclear lanthanide complexes [Ln2(L1)2(NO3)4] (HL1 = 2-amino-1,2-bis(pyridin-2-yl)ethanol; Ln = Dy (Dy2), Tb (Tb2), Ho (Ho2) Er (Er2)) via the in situ self-condensation of Ln(NO3)3·6H2O-catalyzed 2-aminomethylpyridine (16 steps) under solvothermal conditions. Dy2 was mixed with different volatile organic solvents, and photoluminescence tests demonstrated that it showed an excellent selective photoresponse to chloroform (CHCl3). Sensing Tb2 on different organic solvents under the same conditions showed that it exhibited excellent selective photoresponse to methanol (CH3OH). Even under EtOH conditions, Tb2 could selectively respond to small amounts of CH3OH. To the best of our knowledge, achieving a selective photoresponse to various volatile organic compounds by changing the metal center of the complex is difficult. Furthermore, we performed anticounterfeiting tests on Tb2, and the results showed significant differences between the anticounterfeiting marks under white light and ultraviolet light conditions. The alternating current susceptibilities of Dy2 suggested that it was a typical single-molecule magnet (SMM) (Ueff = 93.62 K, τ0 = 1.19 × 10-5 s) under a 0 Oe dc field. Ab initio calculations on Dy2 indicated that the high degrees of axiality of the constituent mononuclear Dy fragments are the main reasons for the existence of SMM behavior.
Keyphrases