Login / Signup

(1R,2S,4r)-1,2,4-Tri-phenyl-cyclo-pentane-1,2-diol and (1R,2S,4r)-4-(2-meth-oxy-phen-yl)-1,2-di-phenyl-cyclo-pentane-1,2-diol: application as initiators for ring-opening polymerization of ∊-caprolactone.

Pavel D KomarovMikhail E MinyaevAndrei V ChurakovDmitrii M RoitershteinIlya E Nifant'ev
Published in: Acta crystallographica. Section E, Crystallographic communications (2019)
Reductive cyclization of 1,3,5-triphenyl- and 3-(2-meth-oxy-phen-yl)-1,5-di-phenyl-pentane-1,5-diones by zinc in acetic acid medium leads to the formation of 1,2,4-tri-phenyl-cyclo-pentane-1,2-diol [1,2,4-Ph3C5H5-1,2-(OH)2, C23H22O2, (I)] and 4-(2-meth-oxy-phen-yl)-1,2-di-phenyl-cyclo-pentane-1,2-diol [4-(2-MeOC6H4)-1,2-Ph2C5H5-1,2-(OH)2, C24H24O3, (II)]. Their single crystals have been obtained by crystallization from a THF/hexane solvent mixture. Diols (I) and (II) crystallize in ortho-rhom-bic (Pbca) and triclinic (P ) space groups, respectively, at 150 K. Their asymmetric units comprise one [in the case of (I)] and three [in the case of (II)] crystallographically independent mol-ecules of the achiral (1R,2S,4r)-diol isomer. Each hydroxyl group is involved in one intra-molecular and one inter-molecular O-H⋯O hydrogen bond, forming one-dimensional chains. Compounds (I) and (II) have been used successfully as precatalyst activators for the ring-opening polymerization of ∊-caprolactone.
Keyphrases
  • biofilm formation
  • escherichia coli
  • pseudomonas aeruginosa
  • tissue engineering
  • solid state
  • candida albicans