Conserved cholesterol-related activities of Dispatched 1 drive Sonic hedgehog shedding from the cell membrane.
Kristina EhringDominique ManikowskiJonas GoretzkoJurij FroeseFabian GudePetra JakobsUrsula RescherUwe KirchheferKay GrobePublished in: Journal of cell science (2021)
The Sonic hedgehog (Shh) pathway controls embryonic development and tissue homeostasis after birth. Long-standing questions about this pathway include how the dual-lipidated, firmly plasma membrane-associated Shh ligand is released from producing cells to signal to distant target cells and how the resistance-nodulation-division transporter Dispatched 1 (Disp, also known as Disp1) regulates this process. Here, we show that inactivation of Disp in Shh-expressing human cells impairs proteolytic Shh release from its lipidated terminal peptides, a process called ectodomain shedding. We also show that cholesterol export from Disp-deficient cells is reduced, that these cells contain increased cholesterol amounts in the plasma membrane, and that Shh shedding from Disp-deficient cells is restored by pharmacological membrane cholesterol extraction and by overexpression of transgenic Disp or the structurally related protein Patched 1 (Ptc, also known as Ptch1; a putative cholesterol transporter). These data suggest that Disp can regulate Shh function via controlled cell surface shedding and that membrane cholesterol-related molecular mechanisms shared by Disp and Ptc exercise such sheddase control.