Login / Signup

Lack of Reproducibility of Histopathological Features in MYC-rearranged Large B-cell Lymphoma Using Digital Whole Slide Images: A Study from the Lunenburg Lymphoma Biomarker Consortium.

Yasodha NatkunamDaphne de JongPedro FarinhaPhilippe GaulardWolfram KlapperAndreas RosenwaldBirgitta SanderReuben ToozeRanjana AdvaniCatherine BurtonJohn G GribbenMarie-José KerstenEva KimbyGeorg LenzThierry MolinaFranck MorschhauserDavid ScottLaurie SehnWendy StevensAndrew ClearMaryse BaiaAbdelmalek HabiMad-Helenie ElsensohnCarole Langlois-JacquesDelphine Maucort-BoulchMaria Calaminici
Published in: Histopathology (2023)
Our findings indicate that there are no specific conventional morphological parameters that help subclassify MYC-rearranged LBCL or select cases for FISH analysis, and that incorporation of FISH data is essential for accurate classification and prognostication.
Keyphrases
  • deep learning
  • diffuse large b cell lymphoma
  • transcription factor
  • machine learning
  • convolutional neural network
  • big data
  • optical coherence tomography
  • artificial intelligence