3D Printing Nanostructured Solid Polymer Electrolytes with High Modulus and Conductivity.
Kenny LeeYuan ShangValentin A BobrinRhiannon KuchelDipan KunduNathaniel CorriganCyrille A BoyerPublished in: Advanced materials (Deerfield Beach, Fla.) (2022)
The development of advanced solid-state energy-storage devices is contingent upon finding new ways to produce and manufacture scalable, high-modulus solid-state electrolytes that can simultaneously provide high ionic conductivity and robust mechanical integrity. In this work, an efficient one-step process to manufacture solid polymer electrolytes composed of nanoscale ion-conducting channels embedded in a rigid crosslinked polymer matrix via Digital Light Processing 3D printing is reported. A visible-light-mediated polymerization-induced microphase-separation approach is utilized, which produces materials with two chemically independent nanoscale domains with highly tunable nanoarchitectures. By producing materials containing a poly(ethylene oxide) domain swelled with an ionic liquid, robust solid polymer electrolytes with outstanding room-temperature (22 °C) shear modulus (G' > 10 8 Pa) and ionic conductivities up to σ = 3 × 10 -4 S cm -1 are achieved. The nanostructured 3D-printed electrolytes are fabricated into a custom geometry and employed in a symmetric carbon supercapacitor, demonstrating the scalability of the fabrication and the functionality of the electrolyte. Critically, these high-performance materials are manufactured on demand using inexpensive and commercially available 3D printers, which allows the facile modular design of solid polymer electrolytes with custom geometries.