Synthesis of [Mo3S4] Clusters from Half-Sandwich Molybdenum(V) Chlorides and Their Application as Platforms for [Mo3S4Fe] Cubes.
Yasuhiro OkhiRyota HaraKenichiro MunakataMizuki TadaTsutomu TakayamaYoichi SakaiRoger E CramerPublished in: Inorganic chemistry (2019)
Triangular [Mo3S4] clusters are known to serve as platforms to accommodate a metal atom M, furnishing cubic [Mo3S4M] clusters. In this study, three [Mo3S4] clusters supported by η5-cyclopentadienyl (CpR) ligands, [CpR3Mo3S4]+ (CpR = C5Me4SiMe3, C5Me4SiEt3, and C5Me4H), were synthesized via half-sandwich molybdenum chlorides CpRMoCl4. In the cyclic voltammogram of the [Mo3S4] cluster having C5Me4H ligands, a weak feature appeared in addition to the [CpR3Mo3S4]0/- redox process, indicating the interaction between [CpR3Mo3S4]- and the [NnBu4] cation of the electrolyte, while such a feature was less significant for the C5Me4SiR3 variants. The [Mo3S4] clusters with bulky C5Me4SiR3 ligands were successfully applied as platforms to accommodate an Fe atom to furnish cubic [Mo3S4Fe] clusters. On the other hand, the corresponding reactions of the less bulky C5Me4H analogue gave complex mixtures.