Local Fractal Connections to Characterize the Spatial Processes of Deforestation in the Ecuadorian Amazon.
Andrea Urgilez-ClavijoDavid Andrés Rivas-TabaresJuan José Martín-SotocaAna María Tarquis AlfonsoPublished in: Entropy (Basel, Switzerland) (2021)
Deforestation by human activities is a common issue in Amazonian countries. This occurs at different spatial and temporal scales causing primary forest loss and land fragmentation issues. During the deforestation process as the forest loses connectivity, the deforested patches create new intricate connections, which in turn create complex networks. In this study, we analyzed the local connected fractal dimension (LCFD) of the deforestation process in the Sumaco Biosphere Reserve (SBR) with two segmentation methods, -CA-wavelet and K-means-to categorize the complexity of deforested patches' connections and then relate these with the spatial processes. The results showed an agreement with both methods, in which LCFD values below 1 corresponded to isolated patches with simple shapes and those above 1 signified more complex and connected patches. From CA-wavelet a threshold of 1.57 was detected allowing us to identify and discern low and high land transformation, while the threshold for K-means was 1.61. Both values represent the region from which deforestation performs local aggressive expansion networks. The thresholds were used to map the LCFD in which all spatial processes were visually detected. However, the threshold of 1.6 ± 0.03 was more effective in discerning high land transformation. such as shrinkage and attrition, in the deforestation process in the SBR.