Login / Signup

Selenite-Decorated Polycrystalline NiO Nanosheets Generated from Cathodic Reconstruction for Electrocatalytic Hydrogen Production.

Kailu GuoXiaoyan LuJinzhi JiaZhan ZhouJunfeng HuangShuang WangShihui LiHaixia WuCailing Xu
Published in: Inorganic chemistry (2023)
Precatalyst reconstruction in alkaline hydrogen evolution reaction (HER) usually leads to changes in the morphology, composition, and structure, thus improving the catalytic activity, which recently receives intensive attention. However, the design strategies of cathodic reconstruction and the structural features of reconstruction products have not achieved a profound understanding. Here, from the point of thermodynamic stability, metastable nickel selenite dihydrate (NiSeO 3 ·2H 2 O) is deliberately fabricated as a precatalyst to comprehensively study the reconstruction dynamics in alkaline HER. Multiple in/ex situ techniques capture the geometric, component, and phase evolutions, proving that NiSeO 3 ·2H 2 O can be transformed into SeO 3 2- -decorated polycrystalline NiO nanosheets with rich active sites and good conductivity under alkaline HER conditions, which act as a real catalytic active species. Density functional theory calculations demonstrate that the adsorption of SeO 3 2- can further promote the HER activity of NiO due to the optimized free energy of water activation and hydrogen adsorption. As a result, the SeO 3 2- -NiO catalyst exhibits a low overpotential at -10 mA cm -2 (90 mV) and long-term stability (>100 h). This work highlights the targeted design of precatalyst to trigger and utilize cathodic reconstruction and provides an available method for the development of adsorption-modulated efficient electrocatalysts.
Keyphrases