An Organic Nanotherapeutic Agent Self-Assembled from Cyanine and Cu (II) for Combined Photothermal and Chemodynamic Therapy.
Xiaojing LiDongmei XiMingwang YangWen SunXiaojun PengJiangli FanPublished in: Advanced healthcare materials (2021)
Although the combination of photothermal/chemodynamic therapy (PTT/CDT) based on various inorganic nanomaterials has promising anticancer effects, poor biocompatibility and biodegradability of inorganic nanoplatforms pose obstacles to their use in clinic. On the contrary, nanoscale metal-organic particles are considered to be a promising platform because of their biocompatibility and efficient metabolism. Herein, HA@Cy-Cu NPs are prepared using the coordination-driven assembly of cyanine dyes with Cu2+ ions. HA@Cy-Cu NPs demonstrate excellent synergistic PTT/CDT, a high photothermal conversion efficiency (43%), and enhanced photostability. Moreover, Cu2+ in the NPs can be reduced to Cu+ by glutathione (GSH) and can transform H2 O2 to •OH, which down-regulates intracellular GSH levels and up-regulates significant oxidative damage. Therefore, promising in vivo tumor ablation is observed at a low dose of HA@Cy-Cu, suggesting that the combination of PTT/CDT greatly improved the antitumor performance. HA@Cy-Cu can further improve organic nano-systems for anti-tumor therapy by integrating PTT and CDT.