Login / Signup

Underwater Drag Reduction and Buoyancy Enhancement on Biomimetic Antiabrasive Superhydrophobic Coatings.

Zhaochang WangXiaojun LiuJiawei JiTongtong TaoTao ZhangJimin XuYunlong JiaoKun Liu
Published in: ACS applied materials & interfaces (2021)
A superhydrophobic (SHB) surface with an excellent self-cleaning ability is of great significance in both human survival and industrial fields. However, it is still a challenge to achieve large-area preparation of antiabrasive SHB surfaces with great mechanical robustness for broader applications. Thus, a kind of facile SHB coating with excellent liquid repellency and antiresistance is constructed by spraying a fluorine-free suspension consisting of epoxy resin, hexadecyltrimethoxysilane (HDTMS), and silica nanoparticles on a glass sheet. The SHB coating not only shows high adhesion on various materials but also has high water repellency under various test conditions, including tape peeling after blade scraping, sandpaper abrasion, and immersing in a complex environment. Additionally, the SHB spheres coated with laser-induced microstructure armor could form a continuous gas cavity during the water entry process, which is essential to prolonging the drag reduction ability of SHB coatings in liquid. Finally, the prepared robust SHB coatings have been employed in underwater buoyancy enhancement and reducing fluid resistance, which may open new avenues for underwater drag reduction in the field of marine applications.
Keyphrases