Login / Signup

Alterations in Rumen Bacterial Community and Metabolome Characteristics of Cashmere Goats in Response to Dietary Nutrient Density.

Yaoyue WangPeng TangYafei XiaoJianming LiuYulin ChenYuxin Yang
Published in: Animals : an open access journal from MDPI (2020)
This study was conducted to investigate the impacts of dietary energy and protein on rumen bacterial composition and ruminal metabolites. A total of 12 ruminal samples were collected from Shaanbei white cashmere goats which were divided into two groups, including high-energy and high-protein (Group H; crude protein, CP: 9.37% in dry matter; metabolic energy, ME: 9.24 MJ/kg) and control (Group C; CP: 8.73%; ME: 8.60 MJ/kg) groups. Thereby, 16S rRNA gene sequencing and a quantitative polymerase chain reaction were performed to identify the rumen bacterial community. Metabolomics analysis was done to investigate the rumen metabolites and the related metabolic pathways in Groups C and H. The high-energy and high-protein diets increased the relative abundance of phylum Bacteroidetes and genera Prevotella_1 and Succiniclasticum, while decreasing the number of Proteobacteria (p < 0.05). The dominant differential metabolites were amino acids, peptides, and analogs. Tyrosine metabolism played an important role among the nine main metabolic pathways. Correlation analysis revealed that both Prevotella_1 (r = 0.608, p < 0.05) and Ruminococcus_2 (r = 0.613, p < 0.05) showed a positive correlation with catechol. Our findings revealed that the diets with high energy and protein levels in Group H significantly altered the composition of ruminal bacteria and metabolites, which can help to improve the dietary energy and protein use efficiency in goats.
Keyphrases
  • amino acid
  • protein protein
  • ms ms
  • binding protein
  • single cell
  • mass spectrometry
  • high resolution
  • small molecule
  • weight loss
  • genome wide
  • microbial community
  • wastewater treatment