Login / Signup

Nanofiber Based Organic Solvent Anion Exchange Membranes for Selective Separation of Monovalent anions.

Yan ZhaoZhaohuan MaiPengxin ShenEmily OrtegaJiang-Nan ShenCongjie GaoBart Van der Bruggen
Published in: ACS applied materials & interfaces (2020)
Present anion exchange membranes are generally constructed by simple and positively charged polymers with insufficient organic solvent resistance, and exhibit a low selectivity in the separation of anions. Here, dissolving poly(paraphenylene terephthalamide) nanofibers into small nanofibers and performing a reaction with quaternary ammonium groups in the one-dimensional small nanofibers, high-performance anion exchange membranes were successfully fabricated. By increasing the 2,3-epoxypropyl trimethylammonium chloride content, the synthesized amide nanofiber quaternary ammonium membranes (ANF#QA) exhibited a higher anion exchange capacity (as high as 1.75 mmol·g-1) and achieved a high electrochemical performance. In electrodialysis, the ANF#QA-10 membrane showed an exceptional Cl- selectivity in dilute and concentrated cells. Due to the dense structure and presence of carboxyl groups on the nanofibers, the ANF#QA membranes exhibited a selective separation of monovalent anions. After 48 h of immersion in aqueous acetone solutions, the final ANF#QA-10 membrane exhibited high desalination and concentration efficiency as the initial membrane. This work highlights the promising use of positive charges on small nanofibers, and proposes the design of a special anion exchange membrane, which can be used for electrodialysis in organic solvent solutions, and to selectively separate monovalent anions.
Keyphrases
  • ionic liquid
  • liquid chromatography
  • induced apoptosis
  • mass spectrometry
  • cell cycle arrest