Login / Signup

π-Extended ligands with dual-binding behavior: hindered rotation unlocks unexpected reactivity in cyclometalated Pt complexes.

Seiya OtaMiguel A SotoBrian O PatrickSaeid KamalFrancesco LeljMark J MacLachlan
Published in: Chemical science (2024)
Cyclometalated platinum complexes play a crucial role in catalysis, bioimaging, and optoelectronics. Phenylpyridines are widespread cyclometalating ligands that generate stable and highly emissive Pt complexes. While it is common practice to modify these ligands to fine-tune their photophysical properties, the incorporation of polycyclic aromatic hydrocarbons into the ligand's structure has been largely overlooked. This report describes the cyclometalation of naphthalenyl- and anthracenylpyridine ligands, which has resulted in ten new luminescent Pt II and Pt IV complexes. These species are enabled by a dual-binding behavior discovered in our polyaromatic-containing ligands. The introduction of naphthalenyl and anthracenyl groups unlocks dual binding modes, with the Pt center bonding to either of two distant carbon atoms within the ligand. These complexes exhibit both symmetric structures with two 5-membered metallacycles and asymmetric structures with 5- and 6-membered metallacycles. This work presents a strategy for the regioselective synthesis of Pt complexes with bespoke structures and photophysical properties. Our findings offer new opportunities in platinum chemistry and beyond, with potential implications for materials and technologies.
Keyphrases
  • high resolution
  • primary care
  • healthcare
  • quantum dots
  • binding protein
  • air pollution
  • living cells
  • quality improvement
  • genetic diversity