Login / Signup

Knocking Out of UDP-Glycosyltransferase Gene UGT2B10 via CRISPR/Cas9 in Helicoverpa armigera Reveals Its Function in Detoxification of Insecticides.

Junyue ZhengXiangguang ChenYao XieYu ZhangYun HuangPeizhuo WuJingshu LvLihong Qiu
Published in: Journal of agricultural and food chemistry (2024)
The role of insect UDP-glycosyltransferases (UGTs) in the detoxification of insecticides has rarely been reported. A UGT gene UGT2B10 was previously found overexpressed in a fenvalerate-resistant strain of Helicoverpa armigera . Herein, UGT2B10 was cloned, and its involvement in insecticide detoxification was investigated. UGT2B10 was highly expressed in the larvae, mainly in the fat body and midgut. Treatment with UGT inhibitors 5-nitrouracil and sulfinpyrazone significantly enhanced the fenvalerate toxicity. Knocking down UGT2B10 by RNAi significantly increased the larvae mortality by 17.89%. UGT2B10 was further knocked out by CRISPR/Cas9, and a homozygous strain (HD-d UGT2B10 ) with a C-base deletion at exon 2 was obtained. The sensitivity of HD-d UGT2B10 to fenvalerate, deltamethrin, cyantraniliprole, acetamiprid, and lufenuron increased significantly, with sensitivity index increased 2.523-, 2.544-, 2.250-, 2.473-, and 3.556-fold, respectively. These results suggested that UGT2B10 was involved in the detoxification of H. armigera to insecticides mentioned above, shedding light upon further understanding of the detoxification mechanisms of insecticides by insect UGTs.
Keyphrases
  • aedes aegypti
  • crispr cas
  • zika virus
  • type diabetes
  • adipose tissue
  • dna methylation
  • gene expression
  • copy number
  • single molecule