Login / Signup

Structural basis for molecular interactions on the eukaryotic DNA sliding clamps PCNA and RAD9-RAD1-HUS1.

Hiroshi HashimotoKodai HaraAsami Hishiki
Published in: Journal of biochemistry (2022)
DNA sliding clamps are widely conserved in all living organisms and play crucial roles in DNA replication and repair. Each DNA sliding clamp is a doughnut-shaped protein with a quaternary structure that encircles the DNA strand and recruits various factors involved in DNA replication and repair, thereby stimulating their biological functions. Eukaryotes have two types of DNA sliding clamp, proliferating cell nuclear antigen (PCNA) and RAD9-RAD1-HUS1 (9-1-1). The homo-trimer PCNA physically interacts with multiple proteins containing a PCNA-interacting protein box and/or AlkB homologue 2 PCNA-interacting motif. The two motifs bind to PCNA by a similar mechanism; in addition, the bound PCNA structure is similar, implying a universality of PCNA interactions. In contrast to PCNA, 9-1-1 is a hetero-trimer composed of RAD9, RAD1 and HUS1 subunits. Although 9-1-1 forms a trimeric ring structure similar to PCNA, the C-terminal extension of the RAD9 is intrinsically unstructured. Based on the structural similarity between PCNA and 9-1-1, the mechanism underlying the interaction of 9-1-1 with its partners was thought to be analogous to that of PCNA. Unexpectedly, however, the recent structure of the 9-1-1 ring bound to a partner has revealed a novel interaction distinct from that of PCNA, potentially providing a new principle for molecular interactions on DNA sliding clamps.
Keyphrases