Controllable Frequency Dependence of Resonance Energy Transfer Coupled with Localized Surface Plasmon Polaritons.
Ming-Wei LeeLiang-Yan HsuPublished in: The journal of physical chemistry letters (2020)
We investigate the intrinsic characteristics of resonance energy transfer (RET) coupled with localized surface plasmon polaritons (LSPPs) from the perspective of macroscopic quantum electrodynamics. To quantify the effect of LSPPs, we propose a numerical scheme that allows us to accurately calculate the rate of RET between a donor-acceptor pair near a nanoparticle. Our study shows that LSPPs can be used to enhance the RET rate significantly and control its frequency dependence by modifying a core/shell structure, which indicates the possibility of RET rate optimization. Moreover, we systematically explore the angle (distance) dependence of the RET rate and analyze its origin. According to different frequency regimes, the angle dependence of RET is dominated by different mechanisms, such as LSPPs, surface plasmon polaritons (SPPs), and anti-resonance. For the proposed core/shell structure, the characteristic distance of RET coupled with LSPPs (approximately 0.05 emission wavelength) is shorter than that of RET coupled with SPPs (approximately 0.1 emission wavelength), which may provide promising applications in energy science.