Login / Signup

Unique p-n Heterostructured Water-Borne Nanoparticles Exhibiting Impressive Charge-Separation Ability.

Yu Jin KimByeongdu Lee
Published in: ChemSusChem (2018)
The ecofriendly synthesis of organic semiconductors with heterojunctions is of interest and requires surfactants to stabilize colloidal nanoparticles (NPs) in aqueous solution. The use of conventional surfactants results in p-n heterostructured NPs, in which both p- and n-type semiconductors are phase separated and confined within a core surrounded by the surfactant shell. The performances of these devices, however, are not comparable to those of solid organic semiconductor films. Further efforts are required to understand and control the morphological structure of the nanoparticles to improve their performances. Here, by using a new class of polyethyleneglycol-based surfactant, PEG-C60, we synthesized unique p-n heterostructured water-borne NPs that comprise a p-type semiconductor core and an n-type PEG-C60 shell. We demonstrate that the morphology gives rise to charge separation superior to conventional water-borne NPs. These PEG-C60-based water-borne NPs can, thus, provide a new paradigm in the current field of water-based organic semiconductor colloids.
Keyphrases
  • room temperature
  • oxide nanoparticles
  • drug delivery