Login / Signup

First Measurements of Organic Triplet Excited States in Atmospheric Waters.

Richie KaurCort Anastasio
Published in: Environmental science & technology (2018)
Photooxidants chemically transform organic compounds in atmospheric drops and particles. Photooxidants such as hydroxyl radical (•OH) and singlet molecular oxygen (1O2*) have been characterized in cloud and fog drops, but there are no measurements of the triplet excited states of organic matter (3C*). These "triplets", which are formed from excitation of chromophoric dissolved organic matter (CDOM), i.e., brown carbon, are difficult to measure because they are a mixture of species instead of a single entity. Here, we use a two-probe technique to measure the steady-state concentrations, rates of photoformation, and quantum yields of oxidizing triplet states during simulated-sunlight illumination of bulk fog waters. Concentrations of 3C* are (0.70-15) × 10-14 M with an average (±σ) value of 5.0 (±5.1) × 10-14 M. The average 3C* photoformation rate is 130 (±130) μM h-1, while the average quantum yield is 3.7 (±4.5)%. Based on our previous measurements of •OH and 1O2* in the same fog samples, the ratio of the steady-state concentrations for 1O2*:3C*:•OH is approximately 3:1:0.04, respectively. At our measured concentrations, triplet excited states can be the dominant aqueous oxidants for organic compounds such as phenols from biomass combustion.
Keyphrases
  • energy transfer
  • quantum dots
  • particulate matter
  • organic matter
  • water soluble
  • wastewater treatment
  • ionic liquid
  • molecular dynamics
  • risk assessment
  • living cells
  • heavy metals
  • anaerobic digestion
  • sewage sludge