Login / Signup

Relaxation Dynamics and Genuine Properties of the Solvated Electron in Neutral Water Clusters.

Thomas E GartmannLoren BanBruce L YoderSebastian HartwegEgor ChasovskikhRuth Signorell
Published in: The journal of physical chemistry letters (2019)
We have investigated the solvation dynamics and the genuine binding energy and photoemission anisotropy of the solvated electron in neutral water clusters with a combination of time-resolved photoelectron velocity map imaging and electron scattering simulations. The dynamics was probed with a UV probe pulse following above-band-gap excitation by an EUV pump pulse. The solvation dynamics is completed within about 2 ps. Only a single band is observed in the spectra, with no indication for isomers with distinct binding energies. Data analysis with an electron scattering model reveals a genuine binding energy in the range of 3.55-3.85 eV and a genuine anisotropy parameter in the range of 0.51-0.66 for the ground-state hydrated electron. All of these observations coincide with those for liquid bulk, which is rather unexpected for an average cluster size of 300 molecules.
Keyphrases