Synthesis of 2-Methyl-1-azulenyl Tetracyanobutadienes and Dicyanoquinodimethanes: Substituent Effect of 2-Methyl Moiety on the Azulene Ring toward the Optical and Electrochemical Properties.
Taku ShojiKota MiuraTakanori ArakiAkifumi MaruyamaAkira OhtaRyuta SekiguchiShunji ItoTetsuo OkujimaPublished in: The Journal of organic chemistry (2018)
We describe the comparative study of optical and electrochemical properties of tetracyanobutadienes (TCBDs) and dicyanoquinodimethanes (DCNQs) with a 2-methyl-1-azulenyl group and their derivatives with a 1-azulenyl substituent examined under the same conditions. TCBDs and DCNQs with a 2-methyl-1-azulenyl substituent have been prepared by the Sonogashira-Hagihara alkynylation of the 2-methyl-1-iodoazulene with arylalkyne derivatives, followed by the formal [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction with tetracyanoethylene and 7,7,8,8-tetracyanoquinodimethane. The optical properties of the TCBDs and DCNQs with a 2-methyl-1-azulenyl group were investigated through the comparison with those of TCBDs and DCNQs with a 1-azulenyl substituent by employing the UV/vis spectroscopy and theoretical calculations. The electrochemical properties of the TCBD and DCNQ derivatives were also examined by cyclic voltammetry and differential pulse voltammetry experiments, which elucidated their multistep redox properties. Furthermore, noticeable spectral changes of these chromophores were identified by the spectroelectrochemical measurements.