Login / Signup

Synthesis and Characterization of Self-Assembled Chiral FeII 2 L3 Cages.

Bin SunSandra S NurttilaJoost N H Reek
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2018)
We present here the synthesis of chiral BINOL-derived (BINOL=1,1'-bi-2-naphthol) bisamine and bispyridine-aldehyde building blocks that can be used for the self-assembly of novel chiral FeII 2 L3 cages when mixed with an iron(II) precursor. The properties of a series of chiral cages were studied by NMR and circular dichroism (CD) spectroscopy, cold-spray ionization MS, and molecular modeling. Upon formation of the M2 L3 cages, the iron corners can adopt various isomeric forms: mer, fac-Δ, or fac-Λ. We found that the coordination geometry around the metal centers in R-Cages 1 and 2 were influenced by the chiral BINOL backbone only to a limited extent, as a mixture of cages was formed with fac and mer configurations at the iron corners. However, single cage species (fac-RR-Cage and fac-RS-Cage) that are enantiopure and highly symmetric were obtained by generating these chiral M2 L3 cages by using the bispyridine-aldehyde building blocks in combination with chiral amine moieties to form pyridylimine ligands for coordination to iron. Next to consistent NMR spectra, the CD spectra confirm the configurations fac-(Λ,Λ) and fac-(Δ,Δ) corresponding to RR- and RS-Cage, respectively.
Keyphrases
  • capillary electrophoresis
  • ionic liquid
  • mass spectrometry
  • high resolution
  • solid state
  • ms ms
  • single molecule
  • liquid chromatography
  • molecular dynamics