Alternating Tetrafluorobenzene and Thiophene Units by Direct Arylation for Organic Electronics.
Xiaoping CuiChengyi XiaoWei JiangZhaohui WangPublished in: Chemistry, an Asian journal (2019)
Direct arylation represents an attractive alternative to the conventional cross-coupling methods because of its step-economic and eco-friendly advantages. A set of simple D-A oligomeric molecules (F-3, F-5, and F-7) by integrating thiophene (T) and tetrafluorobenzene (F4B) as alternating units through a direct arylation strategy is presented to obtain high-performance charge-transporting materials. Single-crystal analysis revealed their herringbone packing arrangements driven by intensive C-H⋅⋅⋅π interactions. An excellent hole-transporting efficiency based on single-crystalline micro-plates/ribbons was witnessed, and larger π-conjugation and D-A constitution gave higher mobilities. Consequently, an average mobility of 1.31 cm2 V-1 s-1 and a maximum mobility of 2.44 cm2 V-1 s-1 for F-7 were achieved, providing an effective way to obtain high-performance materials by designing simple D-A oligomeric systems.
Keyphrases