Login / Signup

Localized self-assembly of macroscopically structured supramolecular hydrogels through reaction-diffusion.

Mengran SunShengyu BaiHucheng WangZhongqi LiYiming WangXuhong Guo
Published in: Soft matter (2024)
Localized molecular self-assembly has been developed as an effective approach for the fabrication of spatially resolved supramolecular hydrogels, showing great potential for many high-tech applications. However, the fabrication of macroscopically structured supramolecular hydrogels through molecular self-assembly remains a challenge. Herein, we report on localized self-assembly of low molecular weight hydrogelators through a simple reaction-diffusion approach, giving rise to various macroscopically patterned supramolecular hydrogels. This is achieved on the basis of an acid-catalyzed hydrazone supramolecular hydrogelator system. The acid was pre-loaded in a polydimethylsiloxane (PDMS) substrate, generating a proton gradient in the vicinity of the PDMS surface after immersing the PDMS in the aqueous solution of the hydrogelator precursors. The acid dramatically accelerates the in situ formation and self-assembly of the hydrazone hydrogelators, leading to localized formation of supramolecular hydrogels. The growth rate of the supramolecular hydrogels can be easily tuned through controlling the concentrations of the hydrogelator precursors and HCl. Importantly, differently shaped supramolecular hydrogel objects can be obtained by simply changing the shapes of PDMS. This work suggests that reaction-diffusion-mediated localized hydrogelation can serve as an approach towards macroscopically structuralized supramolecular hydrogels, which may find potential applications ranging from tissue engineering to biosensors.
Keyphrases
  • tissue engineering
  • drug delivery
  • hyaluronic acid
  • water soluble
  • energy transfer
  • wound healing
  • drug release
  • extracellular matrix
  • aqueous solution
  • quantum dots
  • risk assessment
  • single molecule
  • human health