Login / Signup

Double solvent synthesis of ultrafine Pt nanoparticles supported on halloysite nanotubes for chemoselective cinnamaldehyde hydrogenation.

Rongqian CuiJiaqi ZhouDan WangYafei ZhaoXu XiangHuishan ShangBing Zhang
Published in: Dalton transactions (Cambridge, England : 2003) (2023)
The development of highly active, low cost and durable catalysts for selective hydrogenation of aldehydes is imperative and challenging. In this contribution, we rationally constructed ultrafine Pt nanoparticles (Pt NPs) supported on the internal and external surfaces of halloysite nanotubes (HNTs) by a facile double solvent strategy. The influence of Pt loading, HNTs surface properties, reaction temperature, reaction time, H 2 pressure and solvents on the performance of cinnamaldehyde (CMA) hydrogenation was analyzed. The optimal catalysts with the Pt loading of 3.8 wt% and the average Pt particle size of 2.98 nm exhibited outstanding catalytic activity for the hydrogenation of CMA to cinnamyl alcohol (CMO) with 94.1% conversion of CMA and 95.1% selectivity to CMO. More impressively, the catalyst showed excellent stability during six cycles of use. The ultra-small size and high dispersion of Pt NPs, the negative charge on the outer surface of HNTs, the -OH on the inner surface of HNTs, and the polarity of anhydrous ethanol solvent account for the outstanding catalytic performance. This work offers a promising way to develop high-efficiency catalysts with high CMO selectivity and stability by combining clay mineral halloysite and ultrafine nanoparticles.
Keyphrases