Real-time diameter of the fetal aorta from ultrasound.
Nicoló SavioliEnrico GrisanSilvia VisentinErich CosmiGiovanni MontanaPablo LamataPublished in: Neural computing & applications (2019)
The automatic analysis of ultrasound sequences can substantially improve the efficiency of clinical diagnosis. This article presents an attempt to automate the challenging task of measuring the vascular diameter of the fetal abdominal aorta from ultrasound images. We propose a neural network architecture consisting of three blocks: a convolutional neural network (CNN) for the extraction of imaging features, a convolution gated recurrent unit (C-GRU) for exploiting the temporal redundancy of the signal, and a regularized loss function, called CyclicLoss, to impose our prior knowledge about the periodicity of the observed signal. The solution is investigated with a cohort of 25 ultrasound sequences acquired during the third-trimester pregnancy check, and with 1000 synthetic sequences. In the extraction of features, it is shown that a shallow CNN outperforms two other deep CNNs with both the real and synthetic cohorts, suggesting that echocardiographic features are optimally captured by a reduced number of CNN layers. The proposed architecture, working with the shallow CNN, reaches an accuracy substantially superior to previously reported methods, providing an average reduction of the mean squared error from 0.31 (state-of-the-art) to 0.09 mm 2 , and a relative error reduction from 8.1 to 5.3%. The mean execution speed of the proposed approach of 289 frames per second makes it suitable for real-time clinical use.
Keyphrases
- convolutional neural network
- deep learning
- neural network
- magnetic resonance imaging
- ultrasound guided
- healthcare
- contrast enhanced ultrasound
- pulmonary artery
- aortic valve
- preterm birth
- machine learning
- left ventricular
- high resolution
- pulmonary hypertension
- pregnancy outcomes
- heart failure
- optical coherence tomography
- mass spectrometry
- left atrial
- pulmonary arterial hypertension
- high speed
- atrial fibrillation
- catheter ablation