Dynamics studies for the multi-well and multi-channel reaction of OH with C 2 H 2 on a full-dimensional global potential energy surface.
Shuwen ZhangQixin ChenLi-Dong ZhangJun LiXixi HuDai-Qian XiePublished in: Physical chemistry chemical physics : PCCP (2024)
The C 2 H 2 + OH reaction is an important acetylene oxidation pathway in the combustion process, as well as a typical multi-well and multi-channel reaction. Here, we report an accurate full-dimensional machine learning-based potential energy surface (PES) for the C 2 H 2 + OH reaction at the UCCSD(T)-F12b/cc-pVTZ-F12 level, based on about 475 000 ab initio points. Extensive quasi-classical trajectory (QCT) calculations were performed on the newly developed PES to obtain detailed dynamic data and analyze reaction mechanisms. Below 1000 K, the C 2 H 2 + OH reaction produces H + OCCH 2 and CO + CH 3 . With increasing temperature, the product channels H 2 O + C 2 H and H + HCCOH are accessible and the former dominates above 1900 K. It is found that the formation of H 2 O + C 2 H is dominated by a direct reaction process, while other channels belong to the indirect mechanism involving long-lived intermediates along the reaction pathways. At low temperatures, the C 2 H 2 + OH reaction behaves like an unimolecular reaction due to the unique PES topographic features, of which the dynamic features are similar to the decomposition of energy-rich complexes formed by C 2 H 2 + OH collision. The classification of trajectories that undergo different reaction pathways to generate each product and their product energy distributions were also reported in this work. This dynamic information may provide a deep understanding of the C 2 H 2 + OH reaction.