Login / Signup

Hot-spots detection in count data by Poisson assisted smooth sparse tensor decomposition.

Yujie ZhaoXiaoming HuoYajun Mei
Published in: Journal of applied statistics (2022)
Count data occur widely in many bio-surveillance and healthcare applications, e.g. the numbers of new patients of different types of infectious diseases from different cities/counties/states repeatedly over time, say, daily/weekly/monthly. For this type of count data, one important task is the quick detection and localization of hot-spots in terms of unusual infectious rates so that we can respond appropriately. In this paper, we develop a method called Poisson assisted Smooth Sparse Tensor Decomposition (PoSSTenD) , which not only detect when hot-spots occur but also localize where hot-spots occur. The main idea of our proposed PoSSTenD method is articulated as follows. First, we represent the observed count data as a three-dimensional tensor including (1) a spatial dimension for location patterns, e.g. different cities/countries/states; (2) a temporal domain for time patterns, e.g. daily/weekly/monthly; (3) a categorical dimension for different types of data sources, e.g. different types of diseases. Second, we fit this tensor into a Poisson regression model, and then we further decompose the infectious rate into two components: smooth global trend and local hot-spots. Third, we detect when hot-spots occur by building a cumulative sum (CUSUM) control chart and localize where hot-spots occur by their LASSO-type sparse estimation. The usefulness of our proposed methodology is validated through numerical simulation studies and a real-world dataset, which records the annual number of 10 different infectious diseases from 1993 to 2018 for 49 mainland states in the United States.
Keyphrases