Login / Signup

Highly diversified mitochondrial genomes provide new evidence for interordinal relationships in the Arachnida.

Xin-Chao BanZi-Kai ShaoLi-Jun WuJing-Tao SunXiao-Feng Xue
Published in: Cladistics : the international journal of the Willi Hennig Society (2022)
Arachnida is an exceptionally diverse class in the Arthropoda, consisting of 20 orders and playing crucial roles in the terrestrial ecosystems. However, their interordinal relationships have been debated for over a century. Rearranged or highly rearranged mitochondrial genomes (mitogenomes) were consistently found in this class, but their various extent in different lineages and efficiency for resolving arachnid phylogenies are unclear. Here, we reconstructed phylogenetic trees using mitogenome sequences of 290 arachnid species to decipher interordinal relationships as well as diversification through time. Our results recovered monophyly of ten orders (i.e. Amblypygi, Araneae, Ixodida, Mesostigmata, Opiliones, Pseudoscorpiones, Ricinulei, Sarcoptiformes, Scorpiones and Solifugae), while rejecting monophyly of the Trombidiformes due to the unstable position of the Eriophyoidea. The monophyly of Acari (subclass) was rejected, possibly due to the long-branch attraction of the Pseudoscorpiones. The monophyly of Arachnida was further rejected because the Xiphosura nested within arachnid orders with unstable positions. Mitogenomes that are highly rearranged in mites but less rearranged or conserved in the remaining lineages point to their exceptional diversification in mite orders; however, shared derived mitochondrial (mt) gene clusters were found within superfamilies rather than interorders, confusing phylogenetic signals in arachnid interordinal relationships. Molecular dating results show that arachnid orders have ancient origins, ranging from the Ordovician to the Carboniferous, yet have significantly diversified since the Cretaceous in orders Araneae, Mesostigmata, Sarcoptiformes, and Trombidiformes. By summarizing previously resolved key positions of some orders, we propose a plausible arachnid tree of life. Our results underline a more precise framework for interordinal phylogeny in the Arachnida and provide new insights into their ancient evolution.
Keyphrases
  • oxidative stress
  • transcription factor
  • genome wide identification