Login / Signup

Native SodB Overexpression of Synechocystis sp. PCC 6803 Improves Cell Growth Under Alcohol Stresses Whereas Its Gpx2 Overexpression Impacts on Growth Recovery from Alcohol Stressors.

Phuwanet VachiranuvathinVetaka TharasirivatThitaporn HemnusornnanonSaowarath Jantaro
Published in: Applied biochemistry and biotechnology (2022)
To overcome the limited resistance to alcohol stress, genetically engineered Synechocystis sp. PCC 6803 strains with overexpressions of genes related with the ROS detoxification system (sodB and gpx2, which encode superoxide dismutase and glutathione peroxidase, respectively) were developed. Three engineered strains including a sodB-overexpressing strain (OE + S), a gpx2-overexpressing strain (OE + G), and a sodB/gpx2-overexpressing strain (OE + SG) grew similarly as wild-type control under normal condition. When compared to wild-type control, OE + S and OE + SG strains grew faster for 4 days under 2.0% (v/v) ethanol and 0.3% (v/v) n-butanol conditions, as well as having higher chlorophyll a levels. On the other hand, the prominent growth recovery of OE + G and OE + SG was noted within 4 days in normal BG 11 medium after treating cells with high alcohol stresses for 1 h, in particular 15% ethanol and 2.5% n-butanol. Under 4 days of recovery from butanol stress, specific levels of intracellular pigments including chlorophyll a and carotenoids were dramatically increased in all modified strains. The overexpression of antioxidant genes then revealed a significant improvement of alcohol tolerance in Synechocystis sp. PCC 6803.
Keyphrases