Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries.
Yinxiang ZengXiyue ZhangRuofei QinXiaoqing LiuPingping FangDezhou ZhengYexiang TongXiaoqing LiuPublished in: Advanced materials (Deerfield Beach, Fla.) (2019)
The current boom of safe and renewable energy storage systems is driving the recent renaissance of Zn-ion batteries. However, the notorious tip-induced dendrite growth on the Zn anode restricts their further application. Herein, the first demonstration of constructing a flexible 3D carbon nanotube (CNT) framework as a Zn plating/stripping scaffold is constituted to achieve a dendrite-free robust Zn anode. Compared with the pristine deposited Zn electrode, the as-fabricated Zn/CNT anode affords lower Zn nucleation overpotential and more homogeneously distributed electric field, thus being more favorable for highly reversible Zn plating/stripping with satisfactory Coulombic efficiency rather than the formation of Zn dendrites or other byproducts. As a consequence, a highly flexible symmetric cell based on the Zn/CNT anode presents appreciably low voltage hysteresis (27 mV) and superior cycling stability (200 h) with dendrite-free morphology at 2 mA cm-2 , accompanied by a high depth of discharge (DOD) of 28%. Such distinct performance overmatches most of recently reported Zn-based anodes. Additionally, this efficient rechargeability of the Zn/CNT anode also enables a substantially stable Zn//MnO2 battery with 88.7% capacity retention after 1000 cycles and remarkable mechanical flexibility.