Login / Signup

Recent Advances on Magnetic Relaxation Switching Assay-Based Nanosensors.

Yang ZhangHong YangZhiguo ZhouKai HuangShiping YangGang Han
Published in: Bioconjugate chemistry (2017)
Magnetic relaxation switching assay (MRSw)-based nanosensors respond to the changes of transverse relaxation time (T2) of water molecules resulted from the analyte-induced aggregation and disaggregation of magnetic nanoparticles (MNPs). This strategy has been widely applied to the detections of various substrates from heavy metal ions to organic pollutants, proteins, nucleic acids, bacteria and viruses, and specific cells. Compared with other nanosensors, MRSw-based nanosensors not only are free from the background interferences, signal bleaching, and quenching but also overcome light scattering from samples without pretreatments. Therefore, MRSw-based nanosensors have been developed as real-time and on-site detection platforms for environmental protection, food safety, and risk assessment. This review summarizes the latest developments of the principles, the applicable magnetic nanoparticles, and the exploited environmental and biological applications of MRSw-based nanosensors.
Keyphrases