Solvent-induced enantioselectivity reversal in a chiral metal organic framework.
Benjamin D SlaterMatthew R HillBradley P LadewigPublished in: Journal of separation science (2021)
Solvent-induced enantioselectivity reversal is a rarely reported phenomenon in porous homochiral materials. Similar behavior has been studied in chiral high performance liquid chromatography, where minor modifications to the mobile phase can induce elution order reversal of two enantiomers on a chiral stationary phase column. We report the first instance of solvent-induced enantioselectivity reversal in a homochiral metal organic framework. Further, we highlight the complex enantioselectivity behavior of homochiral metal organic frameworks toward racemic mixtures in the presence of solvents through racemate-solvent enantioselectivity and loading experiments as well as enantiopure-solvent loading experiments. We hypothesize that this interesting selectivity reversal behavior is likely to be observed in other competitive adsorption, nonchiral selective processes involving a solvent.