Methadone against cancer: Lost in translation.
Dirk TheileGerd MikusPublished in: International journal of cancer (2018)
Recently, the opioid analgesic d,l-methadone has gained much attention as a potential antineoplastic compound, considerably triggered through lay press and media. In consequence, physicians and pharmacists are currently confronted with numerous patients willing to use d,l-methadone against their malignancies. Well-performed in vitro and in vivo models have in fact shown pro-apoptotic effects of d,l-methadone or other opioids, but also proliferation-stimulating properties. Moreover, the mechanisms of proposed opioid-stimulated apoptosis are incompletely described or contradicting. Finally, the receptors mostly responsible for induction of apoptosis by d,l-methadone remain unclear as contributions of both µ-opioid receptors, Fas cell death receptors, toll-like receptors, N-Methyl-d-aspartate receptors and opioid growth factor receptors were suggested. Such ambiguity prevents rational application of d,l-methadone or patient stratification to enhance beneficial antineoplastic effects. From a clinical point of view, d,l-methadone and other opioids might in fact prolong survival, but such effects likely originate from their analgesic and neuro-psychotropic properties and, thus, improvements of quality of life. Crucial obstacles to the administration of d,l-methadone are incomplete knowledge about its systemic disposition, highly variable pharmacokinetics, profound drug-drug- or drug-disease interaction and QT-prolongation potential. This article summarizes and rates the pharmacological basis of d,l-methadone as an antineoplastic agent and puts its administration in clinical oncology into perspective. Despite enthralling experimental findings about d,l-methadone-mediated apoptosis in cancerous cells or tissues, clinicians should realize the current lack of evidence for the use of d,l-methadone as an antineoplastic agent. Its administration against cancer pain is, however, tenable, albeit restricted to certain clinical situations.
Keyphrases
- chronic pain
- pain management
- cell death
- cell cycle arrest
- growth factor
- oxidative stress
- primary care
- endoplasmic reticulum stress
- palliative care
- anti inflammatory
- gene expression
- healthcare
- spinal cord injury
- neuropathic pain
- squamous cell carcinoma
- cell proliferation
- signaling pathway
- working memory
- case report
- electronic health record
- young adults
- patient reported outcomes
- chronic kidney disease
- prognostic factors
- intellectual disability
- adverse drug
- climate change
- patient reported