The Poisson-Boltzmann model for implicit solvation of electrolyte solutions: Quantum chemical implementation and assessment via Sechenov coefficients.
Christopher J SteinJohn M HerbertMartin Head-GordonPublished in: The Journal of chemical physics (2019)
We present the theory and implementation of a Poisson-Boltzmann implicit solvation model for electrolyte solutions. This model can be combined with arbitrary electronic structure methods that provide an accurate charge density of the solute. A hierarchy of approximations for this model includes a linear approximation for weak electrostatic potentials, finite size of the mobile electrolyte ions, and a Stern-layer correction. Recasting the Poisson-Boltzmann equations into Euler-Lagrange equations then significantly simplifies the derivation of the free energy of solvation for these approximate models. The parameters of the model are either fit directly to experimental observables-e.g., the finite ion size-or optimized for agreement with experimental results. Experimental data for this optimization are available in the form of Sechenov coefficients that describe the linear dependence of the salting-out effect of solutes with respect to the electrolyte concentration. In the final part, we rationalize the qualitative disagreement of the finite ion size modification to the Poisson-Boltzmann model with experimental observations by taking into account the electrolyte concentration dependence of the Stern layer. A route toward a revised model that captures the experimental observations while including the finite ion size effects is then outlined. This implementation paves the way for the study of electrochemical and electrocatalytic processes of molecules and cluster models with accurate electronic structure methods.