Spatial and Temporal Trends (2004-2016) of Selected Alternative Flame Retardants in Fish of the Laurentian Great Lakes.
Yan WuHongli TanChuanlong ZhouBernard S CrimminsThomas M HolsenJames J PaganoDa ChenPublished in: Environmental science & technology (2019)
Following the phase-out of polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCDD) flame retardants (FRs) from North American markets, the use of alternative FRs has increased. In this study the occurrence and spatiotemporal distributions of 18 dechlorane analogues (collectively referred to as DECs) and 20 alternative brominated FRs (referred to as ABFRs, i.e., brominated FRs other than PBDEs and HBCDD) were investigated in top predator fish megacomposites (i.e., a composite of all 50 fish) collected yearly from each of the Great Lakes from 2004 to 2016. Frequently detected substances include dechlorane 602, 603, 604 Component B, anti- and syn-dechlorane plus, and chlordene plus, as well as several brominated benzene FRs (i.e., hexabromobenzene, pentabromotoluene, and tetrabromo- o-chlorotoluene). Concentrations of ΣDECs and ΣABFRs ranged from 0.33-31.9 ng/g lipid weight (lw) (0.01-8.3 ng/g wet weight or ww) and 0.91-54.7 ng/g lw (0.09-7.1 ng/g ww), respectively. Flame retardant contamination exhibited chemical-specific spatial variations across the five lakes. Concentrations of ΣABFRs in Lake Erie fish were generally lower than those from other lakes. By contrast, fish ΣDEC concentrations were highest in Lake Ontario and the composition of dechlorane analogues differed significantly between Lake Ontario and the other lakes, indicating likely point-source influences. Temporal analyses revealed declining trends of ΣDECs and ΣABFRs in most lakes except Lake Erie, with age corrected trend slopes of -13.5% to -8.8% and -20.1% to -7.0% per year, respectively.