OH-Initiated Reactions of para-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part III. Kinetics of H-Abstraction by H, OH, and CH3 Radicals.
Jason M HudzikJoseph W BozzelliRubik AsatryanEli RuckensteinPublished in: The journal of physical chemistry. A (2020)
Lignin is the most complex component of biomass, and development of a detailed chemical kinetic model for biomass pyrolysis mainly relies on the understanding of the lignin decomposition kinetics. para-Coumaryl alcohol (p-CMA, HOPh-CH═CH-CH2OH), the focus of our analysis, is the simplest of the lignin monomers (monolignols) containing a typical side-chain double bond and both alkyl- and phenolic-type OH-groups. In parts I and II of our work (Asatryan, R. J. Phys. Chem. A 2019, 123, 2570-2585; Hudzik, J. M. J. Phys. Chem. A 2020, current issue), we created a detailed potential energy surface (PES) and performed a kinetic analysis of chemically activated, unimolecular, and bimolecular reactions pathways for p-CMA + OH. Reaction pathways analyzed include dissociation, intramolecular abstraction, group transfer, and elimination processes. The α- and β-carbon addition reactions generate 1,3- (RA1) and 1,2-diol (RB1) adduct radicals, respectively. Well depths are approximately 29 and 41 kcal/mol below the p-CMA + OH entrance level. Kinetic analysis aides in determining the major pathways for our conventional and fractional pyrolysis experiments. The current paper focuses on the H-abstraction reactions via H, OH, and CH3 light ("pool") radicals from p-CMA. The thermochemical properties of all stable, radical, and transition-state species were determined using the ωB97XD density functional theory (DFT) and higher-level CBS-QB3 composite methods. Barrier heights from the prereaction complexes, for OH-radical abstractions, to the transition states for the propanoid side chain are compared to the model H-abstraction reactions of allyl alcohol (AA) with OH and p-CMA with H and CH3 radicals. The lowest-energy, most stable, p-CMA radical formed is at the C9 allylic position (p-CMA-C9j) with exothermicity of 26.63, 41.32, and 27.34 kcal/mol for H, OH, and CH3, respectively. For OH-radical abstraction at this position, our findings are consistent with corresponding data on AA + OH at 37.44 kcal/mol and similar to that of RB1. A similar stable radical with an exothermicity of 34.95 kcal/mol occurs for the phenol hydroxyl group, generating the p-CMA-O4j radical. H-abstraction pathways are considered in relation to other major pathways previously considered for p-CMA + OH reactions including H-atom shifts, dehydration, and β-scission reactions. Derived rate coefficients for substituted phenols can be utilized in detailed kinetic models for lignin/biomass pyrolysis.