Monolithic column functionalized with quinine derivative for anion-exchange capillary electrochromatography.
Zhenkun MaoXiaoning QinZilin ChenPublished in: Electrophoresis (2018)
A novel anion-exchange organic polymer monolithic column based on monomers N-benzylquininium chloride and acrylamide were firstly prepared by in situ copolymerization for capillary electrochromatography. Moreover, N-benzylquininium was firstly introduced as a strong anion-exchange functional group. A relatively strong anodic EOF was obtained in the pH values from 4.0 to 9.0, which was in the same direction with the electrophoretic mobility of acid compounds. Hence, the anion-exchange monolithic column was very suitable for the rapid separation of acid compounds. Eight acid compounds (2-chlorobenzoic acid, mandelic acid, 4-hydroxybenzoic acid, indole-3-acetic acid, 2-aminoterephthalic acid, 3,5-pyridinedicarboxylic acid, benzoic acid, and 4-aminobenzoic acid) were successfully separated on the monolithic column. The highest column efficiency was 4.60 × 105 plates/m (theoretical plates, N) for 3,5-pyridinedicarboxylic acid. The proposed monolithic column was characterized by SEM and FT-IR. The RSDs of the acid compounds migration time for run-to-run, day-to-day, and column-to-column were all less than 5.0%.