Login / Signup

Real-space observation of fluctuating antiferromagnetic domains.

Min Gyu KimAndi BarbourWen HuStuart B WilkinsIan K RobinsonMark P M DeanJunjie YangChoongjae WonSang-Wook CheongClaudio MazzoliValery Kiryukhin
Published in: Science advances (2022)
Magnetic domains play a fundamental role in physics of magnetism and its technological applications. Dynamics of antiferromagnetic domains is poorly understood, although antiferromagnets are expected to be extensively used in future electronic devices wherein it determines the stability and operational speed. Dynamics of antiferromagnets also features prominently in the studies of topological quantum matter. Real-space imaging of fluctuating antiferromagnetic domains is therefore highly desired but has never been demonstrated. We use coherent x-ray diffraction to obtain videos of fluctuating micrometer-scale antiferromagnetic domains in Ni 2 MnTeO 6 on time scales from 10 -1 to 10 3 s. In the collinear phase, thermally activated domain wall motion is observed in the vicinity of the Néel temperature. Unexpectedly, the fluctuations persist through the full range of the higher-temperature helical phase. These observations illustrate the high potential significance of the dynamic domain imaging in phase transition studies and in magnetic device research.
Keyphrases
  • high resolution
  • multidrug resistant
  • molecularly imprinted
  • molecular dynamics
  • risk assessment
  • computed tomography