Login / Signup

Octahedral Distortions Generate a Thermally Activated Phonon-Assisted Radiative Recombination Pathway in Cubic CsPbBr 3 Perovskite Quantum Dots.

Vivien L CherretteFinn BabbeJason K CooperJin Zhong Zhang
Published in: The journal of physical chemistry letters (2023)
Exciton-phonon interactions elucidate structure-function relationships that aid in the control of color purity and carrier diffusion, which is necessary for the performance-driven design of solid-state optical emitters. Temperature-dependent steady-state photoluminescence (PL) and time-resolved PL (TRPL) reveal that thermally activated exciton-phonon interactions originate from structural distortions related to vibrations in cubic CsPbBr 3 perovskite quantum dots (PQDs) at room temperature. Exciton-phonon interactions cause performance-degrading PL line width broadening and slower electron-hole recombination. Structural distortions in cubic PQDs at room temperature exist as the bending and stretching of the PbBr 6 octahedra subunit. The PbBr 6 octahedral distortions cause symmetry breaking, resulting in thermally activated longitudinal optical (LO) phonon coupling to the photoexcited electron-hole pair that manifests as inhomogeneous PL line width broadening. At cryogenic temperatures, the line width broadening is minimized due to a decrease in phonon-assisted recombination through shallow traps. A fundamental understanding of these intrinsic exciton-phonon interactions gives insight into the polymorphic nature of the cubic phase and the origins of performance degradation in PQD optical emitters.
Keyphrases
  • room temperature
  • quantum dots
  • energy transfer
  • ionic liquid
  • light emitting
  • solar cells
  • dna damage
  • high resolution
  • solid state
  • dna repair
  • high speed
  • sensitive detection
  • genome wide
  • single cell
  • high efficiency